p-group, metabelian, nilpotent (class 3), monomial
Aliases: C33⋊2C32, He3.3C32, C32.6C33, C32.13He3, 3- 1+2⋊3C32, C3≀C3⋊1C3, (C3×He3)⋊5C3, C3.12(C3×He3), (C3×3- 1+2)⋊7C3, SmallGroup(243,56)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C33⋊C32
G = < a,b,c,d,e | a3=b3=c3=d3=e3=1, ab=ba, eae-1=ac=ca, dad-1=ab-1c, bc=cb, dbd-1=bc-1, be=eb, cd=dc, ce=ec, de=ed >
Subgroups: 234 in 74 conjugacy classes, 33 normal (8 characteristic)
C1, C3, C3, C9, C32, C32, C32, C3×C9, He3, He3, 3- 1+2, 3- 1+2, C33, C33, C33, C3≀C3, C3×He3, C3×3- 1+2, C33⋊C32
Quotients: C1, C3, C32, He3, C33, C3×He3, C33⋊C32
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(4 9 27)(5 7 25)(6 8 26)(16 20 24)(17 21 22)(18 19 23)
(1 13 11)(2 14 12)(3 15 10)(4 27 9)(5 25 7)(6 26 8)(16 20 24)(17 21 22)(18 19 23)
(1 9 20)(2 25 21)(3 6 19)(4 24 13)(5 17 12)(7 22 14)(8 18 10)(11 27 16)(15 26 23)
(1 2 10)(3 13 14)(4 7 6)(5 26 27)(8 9 25)(11 12 15)(16 17 23)(18 20 21)(19 24 22)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (4,9,27)(5,7,25)(6,8,26)(16,20,24)(17,21,22)(18,19,23), (1,13,11)(2,14,12)(3,15,10)(4,27,9)(5,25,7)(6,26,8)(16,20,24)(17,21,22)(18,19,23), (1,9,20)(2,25,21)(3,6,19)(4,24,13)(5,17,12)(7,22,14)(8,18,10)(11,27,16)(15,26,23), (1,2,10)(3,13,14)(4,7,6)(5,26,27)(8,9,25)(11,12,15)(16,17,23)(18,20,21)(19,24,22)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (4,9,27)(5,7,25)(6,8,26)(16,20,24)(17,21,22)(18,19,23), (1,13,11)(2,14,12)(3,15,10)(4,27,9)(5,25,7)(6,26,8)(16,20,24)(17,21,22)(18,19,23), (1,9,20)(2,25,21)(3,6,19)(4,24,13)(5,17,12)(7,22,14)(8,18,10)(11,27,16)(15,26,23), (1,2,10)(3,13,14)(4,7,6)(5,26,27)(8,9,25)(11,12,15)(16,17,23)(18,20,21)(19,24,22) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(4,9,27),(5,7,25),(6,8,26),(16,20,24),(17,21,22),(18,19,23)], [(1,13,11),(2,14,12),(3,15,10),(4,27,9),(5,25,7),(6,26,8),(16,20,24),(17,21,22),(18,19,23)], [(1,9,20),(2,25,21),(3,6,19),(4,24,13),(5,17,12),(7,22,14),(8,18,10),(11,27,16),(15,26,23)], [(1,2,10),(3,13,14),(4,7,6),(5,26,27),(8,9,25),(11,12,15),(16,17,23),(18,20,21),(19,24,22)]])
G:=TransitiveGroup(27,100);
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(4 26 8)(5 27 9)(6 25 7)(16 22 20)(17 23 21)(18 24 19)
(1 14 10)(2 15 11)(3 13 12)(4 8 26)(5 9 27)(6 7 25)(16 22 20)(17 23 21)(18 24 19)
(1 9 16)(2 6 17)(3 26 18)(4 24 13)(5 20 10)(7 23 15)(8 19 12)(11 25 21)(14 27 22)
(2 11 15)(3 13 12)(4 8 26)(6 25 7)(17 21 23)(18 24 19)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (4,26,8)(5,27,9)(6,25,7)(16,22,20)(17,23,21)(18,24,19), (1,14,10)(2,15,11)(3,13,12)(4,8,26)(5,9,27)(6,7,25)(16,22,20)(17,23,21)(18,24,19), (1,9,16)(2,6,17)(3,26,18)(4,24,13)(5,20,10)(7,23,15)(8,19,12)(11,25,21)(14,27,22), (2,11,15)(3,13,12)(4,8,26)(6,25,7)(17,21,23)(18,24,19)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (4,26,8)(5,27,9)(6,25,7)(16,22,20)(17,23,21)(18,24,19), (1,14,10)(2,15,11)(3,13,12)(4,8,26)(5,9,27)(6,7,25)(16,22,20)(17,23,21)(18,24,19), (1,9,16)(2,6,17)(3,26,18)(4,24,13)(5,20,10)(7,23,15)(8,19,12)(11,25,21)(14,27,22), (2,11,15)(3,13,12)(4,8,26)(6,25,7)(17,21,23)(18,24,19) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(4,26,8),(5,27,9),(6,25,7),(16,22,20),(17,23,21),(18,24,19)], [(1,14,10),(2,15,11),(3,13,12),(4,8,26),(5,9,27),(6,7,25),(16,22,20),(17,23,21),(18,24,19)], [(1,9,16),(2,6,17),(3,26,18),(4,24,13),(5,20,10),(7,23,15),(8,19,12),(11,25,21),(14,27,22)], [(2,11,15),(3,13,12),(4,8,26),(6,25,7),(17,21,23),(18,24,19)]])
G:=TransitiveGroup(27,102);
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 6 14)(2 4 15)(3 5 13)(7 24 16)(8 22 17)(9 23 18)(10 27 19)(11 25 20)(12 26 21)
(1 26 8)(2 27 9)(3 25 7)(4 19 23)(5 20 24)(6 21 22)(10 18 15)(11 16 13)(12 17 14)
(2 4 10)(3 13 24)(5 25 11)(6 21 22)(7 16 20)(9 23 15)(12 14 17)(18 27 19)
(1 26 8)(3 7 25)(5 24 20)(6 21 22)(11 13 16)(12 17 14)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,6,14)(2,4,15)(3,5,13)(7,24,16)(8,22,17)(9,23,18)(10,27,19)(11,25,20)(12,26,21), (1,26,8)(2,27,9)(3,25,7)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14), (2,4,10)(3,13,24)(5,25,11)(6,21,22)(7,16,20)(9,23,15)(12,14,17)(18,27,19), (1,26,8)(3,7,25)(5,24,20)(6,21,22)(11,13,16)(12,17,14)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,6,14)(2,4,15)(3,5,13)(7,24,16)(8,22,17)(9,23,18)(10,27,19)(11,25,20)(12,26,21), (1,26,8)(2,27,9)(3,25,7)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14), (2,4,10)(3,13,24)(5,25,11)(6,21,22)(7,16,20)(9,23,15)(12,14,17)(18,27,19), (1,26,8)(3,7,25)(5,24,20)(6,21,22)(11,13,16)(12,17,14) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,6,14),(2,4,15),(3,5,13),(7,24,16),(8,22,17),(9,23,18),(10,27,19),(11,25,20),(12,26,21)], [(1,26,8),(2,27,9),(3,25,7),(4,19,23),(5,20,24),(6,21,22),(10,18,15),(11,16,13),(12,17,14)], [(2,4,10),(3,13,24),(5,25,11),(6,21,22),(7,16,20),(9,23,15),(12,14,17),(18,27,19)], [(1,26,8),(3,7,25),(5,24,20),(6,21,22),(11,13,16),(12,17,14)]])
G:=TransitiveGroup(27,114);
C33⋊C32 is a maximal subgroup of
C3≀C3⋊C6 (C3×He3)⋊C6 C33⋊(C3×S3)
35 conjugacy classes
class | 1 | 3A | 3B | 3C | ··· | 3J | 3K | ··· | 3V | 9A | ··· | 9L |
order | 1 | 3 | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 9 | ··· | 9 |
size | 1 | 1 | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 9 | ··· | 9 |
35 irreducible representations
dim | 1 | 1 | 1 | 1 | 3 | 9 |
type | + | |||||
image | C1 | C3 | C3 | C3 | He3 | C33⋊C32 |
kernel | C33⋊C32 | C3≀C3 | C3×He3 | C3×3- 1+2 | C32 | C1 |
# reps | 1 | 18 | 4 | 4 | 6 | 2 |
Matrix representation of C33⋊C32 ►in GL9(𝔽19)
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
G:=sub<GL(9,GF(19))| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0],[7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7],[1,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,7,0],[11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7] >;
C33⋊C32 in GAP, Magma, Sage, TeX
C_3^3\rtimes C_3^2
% in TeX
G:=Group("C3^3:C3^2");
// GroupNames label
G:=SmallGroup(243,56);
// by ID
G=gap.SmallGroup(243,56);
# by ID
G:=PCGroup([5,-3,3,3,-3,-3,301,457,2163]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^3=1,a*b=b*a,e*a*e^-1=a*c=c*a,d*a*d^-1=a*b^-1*c,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations